10 resultados para carbohydrate

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pronounced seasonal cycles in the rates of oxygen consumption and feeding were found for Cardium (=Cerastoderma) edule L. measured in the field under ambient conditions. The cockles had a maximum rate of oxygen consumption (0.89 ml O2 g-1 h-1) in April which declined to a minimum of 0.35 ml O2 g-1 h-1 in March. Their feeding rate was variable but had a maximum value (3.91 l g-1 h-1) in April and a minimum value (0.73 l g-1 h-1) in October. There was no apparent seasonal variation in absorption efficiency, with a mean value of 67.6%. Gametogenesis was initiated in January and the population reached a peak in reproductive condition in April/May, followed by a 3 month spawning period. Carbohydrate reserves were synthesised during spawning, and were then utilised during the winter and early spring. An adaptive function for a reduction in time spent feeding is postulated, and correlations between the rates of certain physiological processes and some exogenous and endogenous variables are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate quantification of carbohydrate content of biomass is crucial for many bio-refining applications. The standardised NREL two stage complete acid hydrolysis protocol was evaluated for its suitability towards seaweeds, as the protocol was originally developed for lignocellulosic feedstocks. The compositional differences between the major polysaccharides in seaweeds and terrestrial plants, and seaweed’s less recalcitrant nature, could suggest the NREL based protocol may be too extreme. Underestimations of carbohydrate content through the degradation of liberated sugars into furan compounds may yield erroneous data. An optimised analysis method for carbohydrate quantification in the brown seaweed L. digitata was thus developed and evaluated. Results from this study revealed stage 1 of the assay was crucial for optimisation however stage 2 proved to be less crucial. The newly optimised protocol for L. digitata yielded 210 mg of carbohydrate per g of biomass compared to a yield of only 166 mg/g from the original NREL protocol. Use of the new protocol on two other species of seaweed also gave consistent results; higher carbohydrate and significantly lower sugar degradation products generation than the original protocol. This study demonstrated the importance of specific individual optimisations of the protocol for accurate sugar quantification, particularly for different species of seaweed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the “food available” to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by “dilution” the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton cell size influences particle sinking rate, food web interactions and biogeographical distributions. We present a model in which the uptake, storage and assimilation of nitrogen and carbon are explicitly resolved in different-sized phytoplankton cells. In the model, metabolism and cellular C :N ratio are influenced by the accumulation of carbon polymers such as carbohydrate and lipid, which is greatest when cells are nutrient starved, or exposed to high light. Allometric relations and empirical data sets are used to constrain the range of possible C : N, and indicate that larger cells can accumulate significantly more carbon storage compounds than smaller cells. When forced with extended periods of darkness combined with brief exposure to saturating irradiance, the model predicts organisms large enough to accumulate significant carbon reserves may on average synthesize protein and other functional apparatus up to five times faster than smaller organisms. The advantage of storage in terms of average daily protein synthesis rate is greatest when modeled organisms were previously nutrient starved, and carbon storage reservoirs saturated. Small organisms may therefore be at a disadvantage in terms of average daily growth rate in environments that involve prolonged periods of darkness and intermittent nutrient limitation. We suggest this mechanism is a significant constraint on phytoplankton C :N variability and cell size distribution in different oceanic regimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.